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INTRODUCTION

Small pelagic fish play a key ecological role by linking plankton to top predators, and account for about half of the global marine fish catch. These
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Fig. 1. Magnitude of internal variability in CO2 flux from 1920-2015 in the CESM-LENS
with the four main EBUS highlighted. Source: Brady et al. (2019).
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Recent studies of the CCUS suggest that the interplay between changes in sea temperature (see Fig. 4) and in food availability will affect the abundance and 45}30,
distribution of small pelagic fish in north-west Africa. However, the ways in which climate change can propagate through the physical environment and lower trophic @%}?;;.@90/& OUrces of meanSST (20 10
levels to affect sardine and round sardinella at a population level are not yet well understood.

MOTIVATION...

stocks are most abundant in Eastern Boundary Upwelling Systems (EBUS)Fig. 1), withthe Canary Current Upwelling System (CCUS, Fig. 2),
off northwest Africa, standing as one of the most productive and ecologically significant. Within this system, the dominant species, round
sardinella (Sardinella aurita) and European sardine (Sardina pilchardus), represent a critical socio-economic resource for the Senegalese-
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Fig. 4. SST anomaly yearly times series of the N
CCUS from the baseline period 1951-1981.

Source: Millsetal. (2024).
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DATA AND METHODS

Exploring the underlying physical and biological processes driving changes in sardine and round sardinella abundance and

distributionis critical for anticipating 21"-century ecosystem dynamics. While anthropogenic warming will undoubtedly play an The numerical framework is an existing approach used to study
important role, climate projections combined with full life-cycle individual-based models can shed light on the relative extent sardine and anchovy variability in the CCUS (Sanchez-Garrido et
to which future environmental conditions will affect population dynamics of these species. al., 2019). The end-to-end ecosystem model combines a primitive-

To determine how environmental drivers from 1978-2100
projections (historical and SSP5-8.5) impact the distribution
and abundance of simulated round sardinella and sardine in

equation ocean circulation model (i.e. ROMS), a lower trophic
model for nutrient, phytoplankton and zooplankton (i.e. NEMURO),
and anindividual-based model (IBM) for the population dynamics
of sardine and sardinella.
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2100 SYystem from ERAS and five ESMs (names and resolutions in headers). Right panels: Time
series evolution at map locations A and B for historical period (1978—-2014) and projection
(2015-2100). ERAS reanalysis periodis also displayed.

SIMILAR APPROACHES IN OTHER EBUS

A similar analysis of the end-to-end model projections developed for sardines in the California Current System (CCS)
(Fiechter et al., 2021) evaluates the total annual biomass of the species from each downscaled solution (Fig. 6) and the
spatial distribution of juvenile and adult abundance. Maps of suitable thermal and feeding habitats are also produced,
based on estimated species preferences (Fig. 7).

2000-2020 2040-2060 2080-2100

| | | | | | | |
e

---------

|
e
S,

Thermal [~ AN

- - A Feeding s - Feeding

Thermal = 4N

Feeding

Thermal

2000-2020 2040-2060 2080-2100
I T R B

1200. | ™

GFDL

40°N

(;wx/3w) ssowolg
I

36°N

-------

800. —

e, :_.-.-.:. 7 _:j:::::. " : )
- ” " : ) 4 32°N l ] | : ] ol : ", [ ) 32°N ] l T T T Wy '[ ...... ], 32°N [ l - l : oy ,T ,,,,, I‘ ]
132°W  128°W  124°W  120°W  116°W 132°W  12B°W  124°W  120°W  116°W 132°W  12B°W  124°W  120°W  116°W 132°W 128°W 124°% 120°W 116°W 132°W 128°W 124°W 120°W 116°W 132°W 128°wW 124°wW 120°wW 116°W

Fig. 6. Feeding and thermal habitat suitability for adult sardines in the CCS during
2000-2020 (left), 2040-2060 (center), and 2080-2100 (right) from GFDL solution.
Adapted from Fiechter et al. (2021).
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Fig. 7. Projected sardine spawning stock biomass for 2000-2100, along with mean spatial
MEAN GFDL HAD IPSL biomass distribution (metric tons per km?®) for 2000-2020 (left), 2040-2060 (center), and

2080-2100. Adapted from Fiechter et al. (2021).
MINISTERIO :
R c aecid

0. | | I I I | | | |
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

';'L |

i i
AGENCIA b
ESTATALDE . P
INVESTIGACION 32 =

s B GOBIERI\JO MINISTERIO
o "q DE ESPANA DE CIENCIA, INNOVACION
I Y UNIVERSIDADES Financiado por
la Unién Europea
NextGenerationEU

W



mailto:irenenadal@uma.es
mailto:parages@uma.es
mailto:jcsanchez@uma.es

	Página 1

