

## Linking climate variability and sardinella population in northwest Africa from a novel end-to-end modelling approach

Jorge López-Parages<sup>1,2,4</sup>, José C. Sánchez-Garrido<sup>1,3,4</sup>, Irene Nadal<sup>1,2,4</sup>

<sup>1</sup>Physical Oceanography Group, University of Málaga. Málaga (Spain).

<sup>2</sup>Department of Applied Physics I, Faculty of Science, University of Málaga. Málaga (Spain).

<sup>3</sup>Department of Applied Physics II, School of Telecommunications Engineering, University of Málaga. Málaga (Spain).

<sup>4</sup>Instituto Universitario de Biotecnología y Desarrollo Azul (IBYDA), University of Málaga. Málaga (Spain).

Small pelagic fish dominate the biomass of marine species in Eastern Boundary Upwelling Systems (EBUS), where they support a large part of the world's fisheries and represent a key intermediate link between plankton and top predators. In the Canary Upwelling System, these species account for nearly 70% of the total landings by weight of northwest African countries, with round sardinella (*Sardinella aurita*) standing out as the most abundant species in the southern flank of the system and a key resource for local economies and food security. However, the available observations across the region limits our understanding of how environmental variability affects its abundance and distribution, a constraint that is particularly problematic in the context of rapidly evolving fisheries and the uncertain impacts of climate change. In this work, a novel end-to-end ("climate-to-fish") modelling framework with an explicit representation of round sardinella dynamics is developed, building on earlier modelling efforts by Sánchez-Garrido et al. (2019, 2020) for anchovy and sardine in the same region. Our end-to-end approach, forced with oceanic and atmospheric reanalyses to generate a 50-year long (1959–2008) simulation, couples a regional ocean circulation model (ROMS), a lower-trophic ecosystem module (NEMURO), and an individual-based model representing all life stages of round sardinella. Our results allow us to propose consistent mechanisms by which large-scale climate modes such as ENSO impact the spatio-temporal dynamics of sardinella in the target region.