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Hydrodynamic features play a key role in determining the dispersal and

connectivity of fish populations, especially in highly energetic areas

determined by currents, river flow, and meteorologically induced fluctuations.

Understanding how species interact with these physical processes is essential for

managing vulnerable populations and identifying areas that require effective

conservation efforts. This study examines the hydrodynamics that regulate

connectivity in the Adriatic Sea, a shallow and semi-enclosed basin that is

widely recognized as one of the most important areas in the Mediterranean

Sea for protection. A high-resolution hydrodynamic model coupled with a

lagrangian tracking module serves as the numerical tool. Lagrangian particles,

representing eggs and larvae with typical biological characteristics of generic

marine organisms inhabiting the region, are released throughout the basin at

different times during a test year to identify the most likely pathways of individual

dispersal. The temporal component of connectivity is highlighted using a

previously developed retention clock matrix over different larval durations.

Seasonality is a critical factor in dispersal, with greater variability and reduced

efficiency in winter compared to summer. The potential implications of the

results for improved assessment and management of high value marine species

in the basin are discussed.
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1 Introduction

In marine systems, the persistence and recovery of a population

are influenced by the dispersal and transport processes of

individuals within it, which are controlled by the hydrodynamic

circulation of a given study area (Williams and Hastings, 2013).

When complemented by favorable environmental conditions that

support the survival of the dispersed organisms, this dynamic

process gives rise to the concept of population connectivity, a

phenomenon that encompasses the exchange of individuals

within and between geographical subregions through the

transport of water bodies (Cowen and Sponaugle, 2009; Garcıá-

Lafuente et al., 2021). For most marine species, exchanges occur

through the pelagic dispersal of early life stages, when eggs and

developing larvae can be treated, at least to some degree, as

plankton (Largier, 2003). However, circulation can still play a key

role in the success of organisms at advanced developmental stages,

by conditioning their settlement and dispersal in particular

locations, or by influencing the reproductive stock, e. g., altering

the spawning location and time (Ciannelli et al., 2014). Estimating

these transport pathways is a necessary step towards understanding

the regional functioning of pelagic ecosystems, as well as for marine

ecosystem management, the design of marine protected areas

(Lester et al., 2009; D'Agostini et al., 2015) and the optimization

of vulnerable fisheries resources (Fogarty and Botsford, 2007;

Gaines et al., 2010; Nadal et al., 2022), among others.

A key component to estimate hydrodynamic connectivity, this

understood as the potential of a hydrodynamic field to connect

different sub-areas through the exchange of its individuals (Garcıá-

Lafuente et al., 2021), is the spatio-temporal context in which sub-

populations are connected (Treml et al., 2012). To this aim,

hydrodynamic numerical models have become robust tools

capable of representing circulation features and, when coupled

with appropriate mathematical approaches, effectively analyzing

dispersal pathways by simulating the lagrangian transport of

virtual particles (Van Sebille et al., 2018). This is particularly

relevant for coastal environments, which normally are highly

dynamic regions dominated by tides, upwelling or small-scale

turbulence processes, harsh to study via observational

methodologies (Pineda, 1991). Ideally, a numerical model of a

continental shelf should capture these small-scale coastal features

on a high-resolution grid (at least, 0.5-1 km horizontally), with

accurate near-shore t idal and meteorological forcing

implementation and satisfactory calibration and validation.

An example of such complex application with a strong linkage

to its coastal system is found in the Adriatic Sea (AS hereafter), a

marginal water body characterized by a peculiar topography, having

a very shallow northern area gradually deepening towards the

southeast, and by a large number of freshwater sources (Russo

and Artegiani, 1996). This paper explores the role of AS

hydrodynamic circulation in governing population connectivity

and entails the understanding of key physical processes and

temporal-scales controlling the drifting of individuals, including

spawning, dispersal and final settlement. The relevance of each

species-specific behavior within the hydrodynamic circulation of
Frontiers in Marine Science 02
the area makes every specific case study challenging. Thus, this

study did not aim to replicate the behavior of any specific species,

but rather focused on resolving the physical mechanisms

controlling dispersal of passive elements, representing propagules

of generic abundant species within the specified region. A high-

resolution circulation model, already used in previous studies of this

particular region, coupled to a lagrangian tracking module, is used

as a numerical tool for the estimation of population connectivity

and dispersal. A sophisticated concept introduced by Defne et al.

(2016), consisting of a “retention clock” that highlights the

evolution of source-sink connections through time, is employed

to compare simultaneous spatio-temporal analysis of connectivity.

The proposed methodological approach is applied on a tested year

as a case of study.

The paper is organized as follows: Section 2 presents the

hydrodynamic characteristics of the study area and the

biodiversity of the region, including a list of ichthyofauna

inhabiting the basin to which the results of our research may

apply. The model framework used to represent the main

circulation features of the AS and the lagrangian approach used

to study the transport of virtual tracers, as well as the methods used

to estimate connectivity frommodel results, are described in Section

3. The results of the lagrangian experiments on the tested year are

discussed in Section 4, which includes subsections examining the

influence of seasonality on virtual particle dispersal pathways and

factors related to developmental aspects of abundant fish species in

the AS, with a particular focus on pelagic larval duration. Finally,

Section 5 contains the concluding remarks of this work.
2 Study area

The AS is a semi-enclosed basin in the northernmost

Mediterranean (Figure 1). It is narrow and elongated in a NW–

SE direction, with a length of ∼800 km and a maximum width of

∼200 km. It is bounded by an extremely complex rocky coast along

the Balkans peninsula and by a sandy and regularly shaped shore

along the Italian coastline (Ružić et al., 2019). It is divided into three

main sub-basins, explained by the diverse bathymetric profiles

(Russo and Artegiani, 1996). The Northern Adriatic (“NA” in

Figure 1), extending from the Gulf of Venice and Trieste to the

100 m isobath, is characterized by an extremely shallow mean depth

(∼30 m) with a very weak bathymetric gradient, and occupies the

flooded seaward extension of the Po Delta. The Middle Adriatic

(“MA” in Figure 1), still has relatively shallow waters, and

constitutes the transition between the northern and southern sub-

basins. MA is characterized by two depressions, the Pelagosa Sill

and the Pomo (or Jabuka) Pit, with depths of ∼170 m and ∼270 m,

respectively. The southern part (“SA” in Figure 1) extends to the

Strait of Otranto, the channel connecting the Adriatic with the

Ionian Sea, and is characterized by the depression of the Otranto

Basin, with a maximum depth of ∼1270 m. The Otranto Channel,

which is ∼75 km wide and ∼800 m deep, acts as an exchange area

for water masses, and export of nutrients from the AS (Civitarese

et al., 1998; Fanelli et al., 2023).
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2.1 Relevant hydrologic features

The surface flow dynamics of the AS are characterized, with a

certain seasonal variability, by a general cyclonic circulation (Russo

and Artegiani, 1996). Levantine intermediate waters and Ionian

surface waters flow northward from the Otranto Channel along the

Balkans coast within the Eastern Adriatic Current (EAC), and

return southward with the Western Adriatic Current (WAC)

along the Italian peninsula (Orlić et al., 1992). Coastal currents

exhibit seasonal variability, with the WAC generally stronger in

summer, and the EAC stronger in winter (Zore, 1956; Poulain,

2001). Prevalently during winter, part of the EAC recirculates,

shaping the nearly-permanent Southern Adriatic Gyre in the

southern sub-basin (López-Márquez et al., 2019), and less

frequently, the Northern and Central Adriatic gyres (Martin et al.,

2009) in the upper and middle sub-basins. These eddies partially

favor the cross-basin (east-to-west) transport via their northern

rims (López-Márquez et al., 2019), and also result in the pumping of

highly productive waters that entail rich areas favorable for

mesopelagic spawners (Specchiulli et al., 2016).

Tides in the AS are amplified northwesterly (from the Strait of

Otranto to the northernmost Adriatic), reaching amplitudes up to

1 m in the Venice shoreline, an exceptionally large value in the

Mediterranean basin (Medvedev et al., 2020). The influence of tides

and local winds, namely Bora and Sirocco, induce an important

variability in the main circulation pattern (Orlić et al., 1994). The dry,

cold and strong northeasterly Bora, more frequent in winter storms,

provokes a double gyre response in the North Adriatic circulation,

consisting of a cyclonic loop drifting northward and an anticyclonic
Frontiers in Marine Science 03
drifting southward (Kuzmić et al., 2006). Otherwise, the wetter and

warmer southeasterly Sirocco, typical from late autumn to early

spring, tends to accumulate water near the northernmost coasts

(Pasarić et al., 2007; Molinaroli et al., 2023), usually strengthening

the EAC (Book et al., 2007) and weakening or even reversing the

WAC (Bignami et al., 2007). Summer winds (e.g. the northwesterly

Mistral) are weaker and more stable, which favors a slower and

steadier circulation during this period (Pasarić et al., 2009).
2.2 Ichthyo-biodiversity in the AS

The AS is a recognized biodiversity hotspot in the

Mediterranean, driven by the nutrient transport and runoff by

rivers and the consequent phytoplankton primary production,

and marked by the strong seasonality of the Po River discharges

(Cozzi and Giani, 2011). It is a highly productive fishing ground

(Cavraro et al., 2022), grouped into two Geographical Subareas

(GSA17 in the north, and GSA18 in the south, as shown in Figure 1)

according to the General Fisheries Commission for the

Mediterranean (GFCM, 2009). GSA17 has a wide variety of

seabed habitats, from shallow and muddy bottoms in the east to

steep and rocky bottoms in the west, whereas GSA18 is

predominantly deep, steep, and rocky, supporting sensitive

marine habitats that are under high fishing pressure (Grati et al.,

2018). Despite the differences, both GSAs share important fish

stocks (UNEP/MAP-RAC/SPA, 2015), which has led to the

proposal of a large transboundary marine protected area (Bastari

et al., 2016). Particularly, the AS supports regionally important
FIGURE 1

Map of the AS showing bathymetry from EMODnet, and sketching its general surface circulation: the Western and Eastern Adriatic Currents (WAC
and EAC, respectively) and the North, Central and South Cyclonic Gyres. Orange dashed lines show the virtual boundaries of the three sub-basins,
Northern, Middle and Southern Adriatic (NA, MA, SA, respectively), while semitransparent gray bands show the limits of the two Geographical
Subareas (GSA17 in the north and GSA18 in the south; see Section 2.2). Maps were created using ArcGIS® 10.8 software from ESRI.
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fisheries of small pelagic stocks such as sardine (Sardina pilchardus)

and anchovy (Engraulis encrasicolus) (Morello and Arneri, 2009),

which are widely distributed throughout the whole AS. Over the last

two decades, sardine specimens in the AS have tended to spawn

from early autumn until late spring (Zorica et al., 2020). The peak of

reproductive activity occurs between November and February,

primarily depending on environmental parameters such as

temperature (Zorica et al., 2019). In contrast to the AS, the

spawning period for S. pilchardus appears to end earlier in other

Mediterranean areas (Tsikliras et al., 2010; Basilone et al., 2021).

The Adriatic anchovy spawns from the end of March (winter) to

October (autumn), with its peak spawning season occurring in July

(Zorica et al., 2020). According to Somarakis et al. (2004) and

Basilone et al. (2006), the species’ reproductive peak is in the

summer in the central Mediterranean. In the Bay of Biscay,

anchovy spawn earlier and for a shorter period, peaking in May

and June (Motos, 1996).

As for the bottom trawl fishery, the European hake (Merluccius

merluccius) is the most important target species in terms of both

landed weight and value for the fleets involved (Arneri and Morales,

2000). Unlike the other demersal species, it has two recognized

spawning phases in the AS: the first occurring in winter in deeper

waters, and then, a second occurring in summer after an adult

migration to shallower waters (Ungaro et al., 1993; Vrgoč et al.,

2004). Based on a recent study conducted on specimens sampled

from the GSA17 (Candelma et al., 2021), the hake reproductive

season peaks from April to July. However, spawning females can be

found throughout the year, indicating a protracted spawning period

(Zorica et al., 2019). It should be noted that the reproductive peak of

M. merluccius varies in different geographical areas. Along the

Tunisian coasts, the main peak is recorded from June to October,

with minor peaks in January and April (Khoufi et al., 2014). In the

Gulf of Lion, spawning is highlighted in autumn (Morales-Nin and

Moranta, 2004). Along the Portuguese coast, spawning peaks are

observed in March, May, and August (Costa, 2013). In North

Atlantic waters, the spawning peak lasts from January to April

(Alvarez et al., 2004; Murua and Motos, 2006).

Medium-sized pelagic fish species such as the Atlantic mackerel

(Scomber scombrus), horse mackerel (Trachurus trachurus) and

Mediterranean horse mackerel (Trachurus mediterraneus), despite

their relatively lower commercial value compared to other pelagic

fish species, play also a key trophic role as mesopredators in the

basin (Da Ros et al., 2023), with their reproductive activity peaking

in winter, late winter and summer, respectively (Jardas et al., 2004;

Zardoya et al., 2004). High variability in range and peak spawning

season is associated with latitude, with T. trachurus spawning

season extending up to 8 months, with a peak in spring, in both

the Atlantic and the Mediterranean (Abaunza et al., 2003). Other

relevant fish stocks targeted by the bottom fleet are the red mullet

(Mullus barbatus) and the common pandora (Pagellus erythrinus),

with a spawning peak during summer (Carbonara et al., 2015;

Muntoni, 2015; Zorica et al., 2020), as well as flatfish species such as

the common sole (Solea solea), with a spawning peak in winter

(Fanelli et al., 2022).

Some of the authors previously cited in their works indicate that

some of the most important spawning and nursery grounds on the
Frontiers in Marine Science 04
AS for these species are the Gulf of Trieste, Po Delta, Gargano Cape,

Manfredonia Gulf, Kvarner Gulf, and the northern and the central

Italian coastlines (see locations in Figure 1). Management measures

intended to protect marine resources in the AS were additionally set

out by the (GFCM, 2021) in the Pomo Pit (Figure 1), an area

recognized as a critical habitat for demersal species and identified as

an Ecologically or Biologically Significant Area (EBSA) under the

1992 Convention on Biological Diversity.
3 Experimental procedure

3.1 Hydrodynamic model

Modeling the hydrodynamic processes of the Adriatic is

challenging due to the large number of spatial scales involved and

the extremely intricate coastal morphology (McKiver et al., 2016).

Such complex application was carried out with a high-resolution

numerical model, whose code is based on the Shallow Water

Hydrodynamic Finite Element Model (hereafter SHYFEM;

Umgiesser et al., 2004). SHYFEM solves the shallow water

equations of motion for complex morphology and wide

bathymetric gradients on unstructured grids. The effectiveness of

SHYFEM is well-documented in various applications in Europe

(Bajo et al., 2014; Umgiesser et al., 2014 among others) and in the

Adriatic basin (Bellafiore and Umgiesser, 2010; Ghezzo et al., 2015,

Ghezzo et al., 2018; Umgiesser et al., 2022 and citations therein).

The version used in this study (SHYFEM-Tiresias, Ferrarin et al.,

2019) covers the entire AS, from 12.05° E to 19.92° E and from

39.95° N to 45.80° N, including the small lagoons of Grado-Marano,

Lesina and Venice and the Po Delta (Figure 1).

The full numerical grid consists of 96,392 triangular elements

with horizontal resolution varying from 5 km in the open-sea to a few

dozens of meters along the coastlines (Figure 2A), and 72 vertical Z-

layers of uneven discretization (Ferrarin et al., 2019). It includes the

contribution of five boundary conditions, namely, the sea level,

current velocity, temperature and salinity fluxes at the Strait of

Otranto, and the freshwater discharges from 17 tributaries.

Temperature and salinity fluxes were provided by the

oceanographic fields of Mediterranean Forecast System (Tonani

et al., 2008), and the freshwater discharges were obtained from

monthly and annual climatological values at the river boundaries

(for the location of tributaries, see Ferrarin et al., 2019 and references

therein). Atmospheric forcing, i.e., pressure and wind, is given by the

ECMWF ERA-5 atmospheric reanalysis (Hersbach et al., 2023).

The model outputs in this study are hourly surface values of

zonal (u) and meridional (v) components of drift velocity, sea level,

temperature, and salinity for the year 2018. The selected year is as a

representative scenario for the general hydrographic conditions of

the AS and is accessible in NetCDF through the Institute of Marine

Sciences of the National Research Council of Italy (CNR-ISMAR)

OpenDAP catalog (https://iws.ismar.cnr.it/thredds/catalog/emerge/

catalog.html). It serves as a case study, examining spawning areas

and intra-annual connectivity patterns, rather than assessing inter-

annual variability, which is currently being investigated but not

shown for simplicity in this first application. Supplementary Figure
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S1 displays the monthly averaged surface velocity data from

SHYFEM and the ECMWF ERA-5 wind fields for the simulated

months (January to December 2018). Winter and summer averaged

surface circulation is presented in Figures 2B and C, respectively.

The synoptic fields in Figure 2 reveal similar circulation

patterns, with the velocity field exhibiting greater variability in

winter than in summer. The winter mean (Figure 2B) shows a more

prevalent WAC in the northern sub-basin, and a stronger EAC

along the north-flowing eastern rim of the southern gyre. The

circulation is weaker in summer (Figure 2C), although the WAC is

stronger along the south-flowing rim of the southern gyre in this

season. Despite not being the most typical configuration reported in

the AS, which is characterized by the presence of the EAC and the

WAC and the three reported cyclonic gyres, the slight weakening of

the currents during summer is not unusual. The prevailing

northwesterly Mistral winds during summer intensify the east-to-

west cross-basin transport, leading to stronger southeastward

coastal currents and increased export to the northern Ionian Sea.

During winter, the effect of both easterly and southeasterly winds

disrupts the unidirectional shore transport, resulting in a more

dispersed and irregular pattern within the basin.
Frontiers in Marine Science 05
3.2 Particle tracking module

Dispersal and connectivity were assessed by implementing a

lagrangian particle tracking algorithm based on the open-source

software OpenDrift (version 1.10.6, Dagestad et al., 2018).

OpenDrift consists of several particle-based sub-models that can

be used to predict the transport and fate of different types of

elements. This study applies the main sub-model, OceanDrift,

that uses neutral buoyant particles as tracers. Virtual particles

represent propagules (i.e., eggs and larvae) with the typical

biological traits of generic marine organisms (Table 1). The

analysis focuses on basin-scale larval connectivity from an

ecosystem perspective, rather than on specific target species.

Horizontal trajectories were simulated by integrating the zonal

and meridional velocity field using a 4th order Runge-Kutta

advection scheme, where particle positions are bilinearly

interpolated using the model output data in the hydrodynamic

grid. Vertical velocities, mainly associated with wind-driven

upwelling/downwelling in certain AS areas, are of small

magnitude (less than mm/s to cm/s) compared to horizontal

velocities (cm/s to dm/s). Vertical motions are influenced by
A

B

C

FIGURE 2

(A) Numerical grid and bathymetry of SHYFEM-Tiresias (i.e., the SHYFEM application in the AS; Ferrarin et al., 2019). (B) Modeled surface velocity
(color scale) and direction (arrows), in cm/s, in winter (January-March). (C) Same as panel (B) for summer (July-September).
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other phenomena such as diel cycles, feeding patterns, egg

buoyancy or settlement due to changes in fat content, diurnal

temperature variations affecting buoyancy, etc. As a result, the

vertical velocity is poorly determined, with an uncertainty in its

value that could even change its sign, for which it has not been

considered in the advection module. Another simplification

adopted in our method is that the tracers are fully-passive,

meaning that complex larval traits, such as swimming capability,

migrations, and natality and mortality rates are not considered in

the approach. Under these assumptions, transport of eggs and

developing larvae is determined by the PLD (i.e., the time

propagules spend drifting with currents), the duration of

spawning, and the time-varying horizontal velocity. To prevent

particle stranding near the release site, a strategy of relocating

particles to the open sea was implemented upon encountering the

continental coastline or islands when oceanographic conditions

allowed. The coastline was represented using the Global Self-

Consistent Hierarchical High-Resolution Geography in its full

resolution version (GSHHG_F, version 2.3.7). A 30-minute time

step with non-additional diffusion nor wind field were added to the

trajectories, as they were already included in the hydrodynamic

simulation run of SHYFEM-Tiresias.

To investigate the spatial connectivity patterns, the AS basin

was divided into 40 sub-zones, 21 along the coastlines and 19

distributed by the open sea (Figure 3). These areas were partially

selected based on the experience gained from studies on the

circulation and ecological characteristics of the region of interest

(Coll et al., 2010; Lipizer et al., 2014; UNEP/MAP-RAC/SPA, 2015;

Bastari et al., 2016). Each area played, simultaneously, the role of

source and destination of particles. Two hundred lagrangian

particles as a representative number of propagules are seeded in

each box randomly distributed in the surface layer, so each release

allocates 8,000 new particles in the AS, and their position is

computed every 30 min. To avoid any potential bias that could be

introduced in trajectories if particles were only released at a single

time of the day, particles are released four times per day for 14 days

(56 releases, 448,000 particles in total). All the particle tracks were

stored in netCDF format and the post-processing and visualization

of the simulations were performed in Matlab (version 2023a).

In addition to the spatio-temporal analysis of the trajectories of

eggs and larvae, several factors related to the biology and

development of common fish stocks in the AS with influence on

the dispersal pathways of particles were tested. Table 1 provides the

biological parameters considered in the lagrangian experiments.

The first one is the spawning time, understood as the time of

particle release. Simulations were run for winter and summer,

representing the most active spawning periods of the abundant

species inhabiting the region. The second parameter being tested is

the pelagic larval duration (PLD), which is the time between when a

pelagic propagule leaves the spawning site and when it finally

settles. In practice, the duration of egg and larval drift of marine

organisms varies from weeks to months, depending on the

ontogeny of fish larvae. The value of this parameter per species

has been inferred from the literature cited in Table 1. Overall, given

the uncertainties in determining the transition from passive to

active behavior, we considered a wide PLD of 60 days as a good
Frontiers in Marine Science 06
compromise between a stable value for connectivity in the AS and

an affordable computational time. To test the sensitivity to PLD,

connectivity was recalculated for time windows ranging from 15 to

90 days (Section 4.3).
3.3 Construction and analysis
of connectivity

Two different methods were followed to address hydrodynamic

connectivity (Figure 4). First approach consisted in the so-called

“connectivity matrix” (Figure 4A), which represents the probability

of larval exchange among geographically separated sites (Cowen

and Sponaugle, 2009). In this matrix, each cell is the number of

particles (p) released from a certain source i (along the vertical axis)

and collected in a certain destination j (along the horizontal axis), so
TABLE 1 Literature review of biological traits for some emblematic
species relevant for modeling in relation to the AS
oceanographic conditions.

Marine species
(habitat)

Common name
Scientific name

Spawning
season

PLD
[days]

Bibliography

Sardine (P)
Sardina pilchardus

Winter 40-60

Sciascia et al.
(2018)

Zorica et al.
(2019, 2020)

Anchovy (P)
Engraulis encrasicolus

Early summer 30-40

Morello and
Arneri (2009)

Patti et al. (2020)
Zorica et al. (2020)

Atlantic mackerel (P)
Scomber scombrus

Winter n.f.
Zardoya

et al. (2004)

Horse mackerel (P)
Trachurus trachurus

Late winter 21-30
Jardas et al. (2004)

Van
Beveren (2012)

Mediterranean horse
mackerel (P)
Trachurus

mediterraneus

Summer n.f. Viette et al. (1997)

European hake (D)
Merluccius merluccius

Winter, Summer 40

Arneri and
Morales (2000)

Hidalgo
et al. (2019)

Red mullet (D)
Mullus barbatus

Summer 22-37
Muntoni (2015)

Carbonara
et al. (2015)

Common pandora (D)
Pagellus erythrinus

Summer 44 Vrgoč et al. (2004)

Common sole (B)
Solea solea

Winter 31-38

Paoletti et al.
(2021)
Fanelli

et al. (2022)
From left to right: Marine species are the organisms to which the results of this work may
apply, with a code that indicates their corresponding habitats (P, Pelagic; D, Demersal; B,
Benthonic); spawning season is the average reproductive period; PLD is the length of time the
propagule is pelagic; bibliography indicates the source(s) where information was obtained. n.f.
(not found/not reported) in the AS.
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Ci,j is the probability that an individual or group of individuals of

population i will move to population j after a certain tracking time

(C(i,j) =   p(j)p(i)). Diagonal cells of this matrix (where i = j) stand for the

self-recruitment, i.e., the number of individuals that remain in the

same region from which they were originally released, including

particles that eventually return to the sourcing area (Cowen et al.,

2006). Connectivity ratios (C, with values ranging from 0 to 1),

therefore, quantify the strength of connectivity between different

sites, with higher values indicating more favorable connections.

Source-sink dynamics of larval dispersal can be elucidated with this

approach, revealing the direction and intensity of connections. It

further enables to estimate the potential and effectiveness of a given

area as a nursery ground for developing larvae. Despite this,

connectivity matrices only offer a partial depiction of larval

connectivity complexity, neglecting crucial information such as

the identification of areas that are rapidly dispersing, both

dispersing and recruiting, or only recruiting for individuals

through time.

Prompted by this lack of temporal information in the network,

the second method used a more-recent approach developed by

Defne et al. (2016). The method, called a “retention clock matrix”

(RCM, hereafter), uses a clock in each cell to track the temporal

changes in source-sink connections, evaluating the time-dependent

connectivity (see Figure 4B). Specifically, each retention clock

describes the release event as a circular clock that tracks the

number of particles (p) over the entire time scale of interest (T)

(see inset of Figure 4B). The time scale is discretized into slices with

a temporal resolution of Dtn (C(i,j,tn) =
p  (j,tn)
p(i,t0)

). As in the conventional

connectivity matrix, in all RCMs, the horizontal axis represents the

boxes from which particles are released, and the vertical one is

where the particles end up. The strength of connectivity between
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each possible combination of source-destination is depicted with a

color scale, in which slices with the darkest color intensity indicate

the larger fraction of particles moving from their origin to the

destination. Naturally, domains with different retention

characteristics have unique retention clocks, which reflect the rate

at which particles are retained or lost within a domain through time.

In slowly dissipating environments, the particle concentration,

hence the clock, would gradually approach zero, indicating that

individuals are being spawned at a slower rate than they are being

dispersed. In rapidly dispersing domains, the clock would approach

zero faster and a larger portion of it would remain at null values,

suggesting that tracers are subjected to strong currents that result in

direct connections to other domains. The opposite behavior is

depicted by retentive domains, identified by clocks with

connectivity values close to 1 at all-time scales, which indicate

that spawned individuals are effectively retained due to physical or

biological features that prevent their advection.

To account for the discrepancy in sizes and shapes of source and

destination polygons (see Figure 3), the estimated connectivity in

both cases was normalized by the areas (a) of each cell involved in

the connection C   =  C � ½a(i)a(j)�, so that the maximum value of the

matrix is 1. In both methods, connectivity was only considered

significant if the ratio C satisfied a minimum threshold of 0.01,

meaning that at least 1% of the particles released from the source

reached the destination polygon. Thus, the presence of either

colored cells (in method 1) or clocks (in method 2) indicate a

connection between the source and destination polygon, while a

blank cell indicates that the connection is zero or less than 1%, and

thus, negligible. The connectivity ratios C are hereinafter

interpreted in the text as S# - D#, indicating particle transport

from source (row number) to destination (column number),
FIGURE 3

Map of the study area with the subareas of source and destination of particles and bathymetric features. A summarizing table that illustrates the
code numbers, associated names and surface areas in km2 of each box is included.
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respectively. A numerical code made available to the scientific

community by Defne et al. (2016) was adapted to calculate the

RCMs in this study.
4 Results and discussion

4.1 Connectivity matrix

The mean connectivity matrix estimated at winter and summer

for the year 2018 is illustrated in Figures 5A and B respectively, and

the result of its difference (summer minus winter) is provided

separately in Supplementary Figure S2.

A characteristic feature of both winter and summer scenarios is the

prevalence of high connectivity rates along the diagonal of the matrix.

This indicates that these regions are characterized by a certain level of
Frontiers in Marine Science 08
auto-retention of propagules. Self-retention probability differs greatly

between the distinct boxes, ranging from 60% in the Kvarner Gulf

(S13-D13) to 5% in Bosnia (S33-D33) for winter (Figure 5A), and from

55% in Manfredonia (S26-D26) to 4% in Brindisi (S34-D34) for

summer (Figure 5B). This spatial difference is foreseeable, as the

complex system of islands in the Kvarner Gulf, and the existence of

a small cyclonic eddy in the Gulf of Manfredonia (see Figure 1) act as

trap of propagules (Specchiulli et al., 2016; Sciascia et al., 2018), whilst

Brindisi and Bosnia coasts, nearby the Strait of Otranto, are subjected

to stronger advection by the EAC-WAC circulation system. Overall,

self-retention in the northern and middle Adriatic sub-basins (areas 1-

25) is more likely than in southern Adriatic sub-basin (areas 26-40),

denoted by the darker color intensity of the former diagonal cells

compared with the latter elements (~28% in areas 1-25, compared to

~13% in areas 26-40, in both winter and summer scenarios).

Considering also the connectivity values out of the diagonal,

Gargano (D22) and Manfredonia (D26) during summer

(Figure 5B), display a large fraction of particles arriving from

S14-20 and S18-22, with mean connectivity values of 10% and

20%, respectively, and maximum reaching 50% (S18-D22) and 70%

(S22-D26). This spatial pattern is to be expected, since the WAC

acts as the main advection process along the Italian shelf, although

it is also subject to seasonal fluctuations (Supplementary Figure S1).

Contrastingly, Istria (D9), Kvarner Gulf (D13), and the Kornati

(D17), Korcula (D25), and Elaphiti (D29) Islands, exhibit external

particle reception rates less than 5%. Extreme case is provided by

D17 (Figure 5B), which shows zero reception of individuals from

external boxes. These areas harbor relatively closed populations,

receiving particles from a limited number of grounds, but suggest

their potential as self-sustaining areas. During winter (Figure 5A),

isolated self-sustaining areas are less obvious, although the shielding

capacity of the Kornati Islands (D17), northern Croatia (D21) and

the Korcula Islands (D25) is noteworthy, as they receive nearly null

abundance of particles from the northern part of the basin. Areas

D2 (Venice), D3 (Trieste), D5 (OpenSea2) and D9 (Istria) only

receive particles from a small part of the southern sub-basin, while

source areas S12 (OpenSea6), S13 (Kvarner Gulf), S17 (Kornati

Islands), S21 (North Croatia), S24 (OpenSea12) and S25 (Korcula

Islands) do not send any particles to the southern sub-basin. A

striking example is the Kvarner Gulf (D13), which paradoxically

shows minimal external particle receptions in summer, but high

external particle exchange in winter, while remaining self-retaining

(elevate connection with itself). This suggests that this area may play

a hatchery and nursery role for marine species, as suggested by the

previously cited authors (Zorica et al., 2020), and suggest the

existence of physical processes determining the temporal

evolution of the particles in the basin.

Based on the averaged result, we can derive macro-regions as

combinations of boxes of our network. For instance, more evident

in summer than in winter, areas 1-9 and 26-40 may be identified as

two isolated regions with a slight or null inter-connection. A third

area can be identified in 10-25 (central Adriatic), where the particle

reception is mainly limited to the upper part of the connectivity

matrix (northern and central Adriatic), with limited or no exchange

with the southern sub-basin during summer. During winter, the

prevailing currents over the AS inject more energy in the basin,
B

A

FIGURE 4

(A) An example of a connectivity matrix estimated in ten artificial
subareas with fictitious ratios of connectivity varying from 0 (blank
cells, null connectivity) to 1 (brownest colored cells, maximum
connectivity). Rows correspond to the release zones of virtual
larvae, whilst columns correspond to the destination areas of the
released larvae. Diagonal stands for self-recruitment, which is the
number of virtual larvae retained within the area from which they
were released. (B) RCM applied to the same example, with an inset
that zooms an example of a box connection with itself. In the inset,
time progresses clockwise from 0 to a time scale T (e.g. 60 days) as
concentration of particles decreases from 1 to 0, with a given
temporal resolution of Dt (e.g. 12 slices of 5 days each).
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leading to a wider dispersion of particles and a less distinct

delineation of macro-regions. The seasonality is also evident by

the significantly higher number of valid elements, i.e., cells with

connectivity probabilities higher than 1%, in winter (~900 out of

1600, Figure 5A) compared to summer (~600 out of 1600,

Figure 5B). The likely reason is the atmospheric forcing, which is

less variable and more stable in summer, resulting in diminished

velocities and consequently shorter drifter paths in this period. The

much more dispersed transport because of the more variable
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atmospheric forcing during winter may create otherwise less

structured connectivity patterns within the basin.
4.2 Time-dependent connectivity

Temporally averaged connectivity matrices (Figure 5;

Supplementary Figure S2) highlight the role of circulation

structures on particle dispersion and provide predictable
A

B

FIGURE 5

Average connectivity matrices representing the mean exchange of particles between sub-zones in winter (A) and summer (B). The color scale
represents the particle concentration at the selected time scale. A small map of the study area showing the sub-areas is displayed in the summer
scenario to facilitate interpretation.
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connectivity patterns that show seasonal variability. However, it

also shows that the selection of a temporal snapshot is subjective

and can limit the analysis due to loss of information. It is more

adequate to preserve the temporal information of connectivity,

while benefiting from the simplicity of a connectivity matrix

(Defne et al., 2016). To this end, the RCM for all source-

destination pairs in the AS basin has been estimated for the same

temporal configurations (winter and summer). A maximum time

scale of 60 days is used for all model scenarios. Each slice on all

retention clocks represents 5 days. The color scale in each clock

represents the particle concentration at the selected time slice, with

darker colors indicating larger fraction of particles moving from

source to destination.

4.2.1 Auto-connectivity
Auto-connectivity, the ability of a system to receive and retain

particles from and within itself, is a pivotal determinant of

population persistence. It represents the self-sustaining capacity

of a population structure, a factor intricately influenced by the

physical processes that mediate the propagules transport (Cowen

et al., 2006). The quantification of self-recruitment probability, a

direct metric of auto-connectivity, is made by evaluating the

diagonal cells of the connectivity matrix (where i = j), with higher

values signifying a more robust tendency for particles to remain

within the area from which they were initially released. The cells

corresponding to these diagonal matrices are extracted from the

estimated RCMs and depicted in Figure 6, illustrating the time-

dependent self-recruitment probabilities for both winter and

summer seasons.

In the winter experimental configuration (Figure 6A), a low self-

sustained clock pattern is evident along the Italian coast, indicating

rapid southward transport within the western Adriatic shelf, with

particles leaving the source area within a maximum of 10 days. This is

consistent with the winter WAC pattern shown in Figure 2B. Regions

located above the northern Adriatic gyre show retentive

characteristics, as indicated by elevated clock values in both

intensity and duration, particularly observed in Po (1), Venice (2),

OpenSea5 (11), and OpenSea6 (12). The summer scenario

(Figure 6B) presents a stark contrast, with the exception of the

Croatian coast, which shows similar auto-retention characteristics.

Specifically, the Kornati Islands (17) and northern Croatia (21) retain

their winter characteristics for an extended period of up to 50 days,

and the Gulf of Kvarner (13), along with the islands of Korcula (25)

and Elaphiti (29), exhibit clock patterns almost identical to the winter

configuration throughout the 60-day tracking period. This suggests

that the coastal topography of the eastern Adriatic coast, rather than

the seasonal regime, plays the primary role in influencing its auto-

retention behavior. Po (1) and Venice (2), which contain complex

lagoon systems, also maintain their behavior in both seasons due to

their topographic conformation. Conversely, the coastal areas of

Gargano (22) and Manfredonia (26) along the Italian shelf, exhibit

higher auto-retention values in summer than in winter, in both

intensity and duration, which persist for almost the entire 60-day

period. Similarly, the onshore regions along the western Italian coast
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south of the Po estuary (6, 7, 10, 11) show high retention rates, in

agreement with previous findings in this region (Revelante and

Glimartin, 1992; Bray et al., 2017).

4.2.2 Winter connectivity
When the RCM estimated in winter (Figure 7) is analyzed, more

granular temporal information becomes available with respect to

the time-averaged analysis. For instance, among the previously

identified macro-regions, the one corresponding to the northern

Adriatic Sea (boxes 1-9), not only shows low ratios but also exhibits

poor retention capacity with decreased persistence of connectivity

over time. This is especially noticeable in the OpenSea3 (S7), which

exhibits high average connectivity ratios (~40%, Figure 5A) but,

when evaluated temporally, reveals consistently short and variable

durations, with peak rates occurring at 40 days of tracking for

particles originating from Trieste (S3-D7) and OpenSea2 (S5-D7).

The central macro-region (10-25) shows a more extensive

distribution of connections, encompassing both the northern and

southern sub-basins, with particle transfers to the southern Adriatic

being significantly stronger and more persistent throughout the

tracking period. Retention areas in this part of the basin occur in

the Kvarner Gulf (D13), OpenSea10 (D20), OpenSea12 (D24) and the

Korcula Islands (D25). It is particularly noteworthy in the case of the

Kvarner Gulf (D13), which, despite the extremely complex rocky

coastline, shows the highest connectivity receptions within the RCM

(S16-D13, S15-D13, S12-D13 with a ratio of >60% sustained over

longer periods). This pattern is likely due to enhanced atmospheric

variability during winter, which induces rapid and direct transport of

particles into these coastal areas. A strong and persistent rate of

particle reception is further in the OpenSea6 (D12), which maintain a

strong connectivity throughout the 60-day tracking period with the

OpenSea8 (S16-D12), the Kornati Islands (S17-D12), the OpenSea10

(S20-D12) and North Croatia (S21-D12). These four areas shape a

continuously well-connected water parcel compatible with the effect

of the central Adriatic gyre, and likely identify one of the most

productive areas for fish and important spawning and nursery

grounds for commercially valuable fish species. Other important

connections with the southern subbasin occur in the OpenSea9 (D19)

and in the OpenSea10 (D20), which receives particles from Gargano

(S22), OpenSea11 (S23), OpenSea12 (S24), and Korcula Islands (S25).

These areas build a corridor of connection south of the Pelagosa Sill,

with connectivity percentages of 45% throughout the 60-day clock

period. The area D20 receives particles secondarily from S26-40, with

special intensity in a period from 25 to 45 days from areas S29, S33,

S37 which represent the pattern of the EAC. The connection of the

central Adriatic with the northern is relatively weak and variable, as

evidenced by the low (<30%) and delayed (>40 days) ratios in the

upper portion of the matrix, attributed to the northward transport of

currents towards the end of the tracking period. A relevant

connection in this part of the basin occur in the OpenSea7 (D15)

for particles arriving from the northernmost Adriatic (S1-D15, S2-

D15, S4-D15, S5-D15, S7-D15, S10-D15 and S11-D15), indicating a

particularly retentive area south of the Po River, corroborating

previous findings in the region (Bray et al., 2017).
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Among the three identified macro-regions, the southern one

(26-40) emerges as the most retentive. It maintains a generally

persistent connectivity, being particularly significant in specific

regions of the central macro-region (S28-D24, S33-D24), with a

high rate of connections (>70%) persisting 35 days. Additionally, it

exhibits a high degree of inter-connectivity, with the most extensive

and enduring connection occurring between areas 31, 32 and 35, 36.

This pattern is likely attributable to the presence of the south gyre,

which is particularly prominent during winter (Figure 2B;

Supplementary Figure S1).
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4.2.3 Summer connectivity
The rather scattered and variable connections seen in winter

contrast with the much more unidirectional connectivity pathways

in summer (Figure 8). This becomes apparent in the less heightened

variability observed in both direction and duration of connections

compared to the winter RCM. The northern macro-region (boxes 1-

9), which showed a reduced ratio and persistence over time in

winter, shows not only the highest but also the most persistent

connectivity percentages in summer, denoted by the clocks with

probabilities above 20% on all time scales (S2-D1, S3-D2, S4-D2,
A

B

FIGURE 6

Clocks of auto-connectivity extracted from the diagonal of RCMs estimated at winter (A) and summer (B) and displayed spatially in the centered
positions of the 40 defined subareas.
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S5-D2, S4-D3, S2-D3, S2-D4, S3-D4, S3-D5). The darker color

intensity in the matrix indicates a significant influx of individuals

into destination 7 (OpenSea3), with a concentration of elements

ranging from 20% to 60% between S1-D7 (Po-OpenSea3) and from

30% to 90% between S8-D7 (OpenSea4-OpenSea3) during the

tracking time. Within the same box, particles originating from

source boxes 3 (Trieste), 4 (OpenSea1), and 5 (OpenSea2), once

arriving, maintain connectivity percentages above 70% for the rest

of the tracking period. The particles reaching these areas exhibit

rapid travel times (5 to 15 days), which is within the range of the

PLD of the relevant species (Table 1) and indicates their potential

for retention. Overall, the entire northern macro-region requires a

longer time (approximately 30-60 days) to establish a connection

with the central part of the basin (D10-25), with slight or null
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transport towards the southern macro-region (D26-40). This

pattern is consistent with the slower flow conditions seen during

summer (Figure 2C), but also provides important information

regarding species strategy, as individuals arrive in that region at

advanced developmental stages.

Regarding temporarily sustained connectivity, the southern

macro-region 26-40 follows, with the highest and longest

connectivity observed between the boxes 35 and 36 (OpenSea17

and OpenSea18). These two sites also exhibit strong connectivity for

the entire 60-day tracking period to boxes 31 and 32 (OpenSea15

and OpenSea16), forming a well-connected water parcel consistent

with the isolation effect of the southern Adriatic gyre. Paradoxically,

a notable connectivity is observed between Bosnia (S33) and

Montenegro (D37), with 67% of particles flowing in the opposite
FIGURE 7

RCM representing the time-dependent exchange of particles between sub-zones in winter, with the diagonal cells highlighted in blue color. A small
map of the study area showing the 40 sub-areas and their corresponding codes is displayed to facilitate the interpretation of results.
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direction of the EAC. This unexpected behavior is attributed to the

reversal of currents very close to the shore due to instability created

by the weakening of the coastal current during summer. In the

southern macro-region, a mirrored relationship emerges in

comparison to the northern counterpart along the south shore,

characterized by a limited number of connections with the northern

areas at longer times of arrival (>45 days). This pattern confirms

that the northern and southern Adriatic, while internally connected,

act as isolated water bodies within the region, which maximizes

their potential as unique nursery environments.

The opposite situation is seen in the areas of the central macro-

region 10-25, which reveal connections with a wider portion of the

AS and demonstrates both retention and dispersal traits.
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Destination areas D10-12,14-16,18-19 consistently exhibit longer

arrival times (>45 days) and poor retaining capacity for particles

originating from the northern sub-basin compared to other boxes.

In contrast, Gargano (D22) and Manfredonia (D26) are identified

as top retaining areas, with connectivity consistently exceeding that

of other destinations throughout all time slices. The majority of

particles observed in the Manfredonia Gulf (D26), previously

identified as a recruiting area in the averaged analysis (Figure 5B),

are primarily and nearly continuously transported from the

adjacent Gargano (S22) during the simulation period, with

secondary and slightly delayed contributions from S23 and S24

(>15 days). This pattern arises from east-to-west shore transport,

particularly noticeable during summer due to the displacement of
FIGURE 8

Same as Figure 7 for the summer experimental configuration.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1360077
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Nadal et al. 10.3389/fmars.2024.1360077
the Adriatic central gyre (see Figure 2C). In the same area, particles

require more than 30 days to arrive both from North Croatia (S21)

and the Kornati Islands (S17), and more than 40 days from Ancona

(S10) and the OpenSea areas of the northern Adriatic (S11, S12, S15,

S16). This temporal pattern is to be expected: as the distance

increases, the time of arrival of particles also does. But the point

to note here is that the high rate of particles reaching Manfredonia

stays and recirculates nearly continuously within the same box for

the rest of the simulation period. This observation confirms the

Gulf’s role as a particle receptor during the summer and

subsequently as a nursery ground for larvae, a finding that could

not be obtained in the time-averaged analysis (Figure 5B).

The spatial pattern observed between Gargano and Manfredonia

(S22-D26) is consistent with patterns observed between San Marino

and Ancona (S6-D10), and similarly with Pescara (S10-D14), and

Vasto (S14-D18). This is likely attributable to the WAC, the primary

advection mechanism transporting particles southward along the

Italian shelf. Particularly during this season, the wind regime

indicated a Mistral event blowing northeasterly (Supplementary

Figure S1, July-August), which further supports the local

displacement of particles onshore, despite the usual tendency of the

coastal current to be detached from the shore during summer (Vilibić

et al., 2012).
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4.3 Effects of PLD on connectivity

The temporal component of connectivity between specific areas

must be directly related to the species-specific PLD to ensure the

practical application of the research. Determining the time that

propagules spend drifting with currents is a key issue in shaping the

dispersal potential and population connectivity of a given area. As

mentioned in Section 3.2, the range of plausible durations is broad

and uncertain (Table 1). While continuing to use the numerical

model as a tool, it is worth exploring the dependence of connectivity

on PLDs. To address this, we investigated the rate of particle

reception in each area across a range of PLD windows from 15

days to 90 days, with intervals of 15 days (Figure 9).

In the winter configuration (Figure 9A), subareas show particle

receptions evenly distributed across the PLD windows, with the

most significant connections forming after at least 30 days of

simulation. This is particularly noticeable along the Italian shelf

(areas 6, 10, 14, 18, 22, 26, 30, 34), where the probability of receiving

particles is less than 5% within the initial 15 days and remains below

20% within the first 30 days. This hinders the possibility of early life

stages persisting in these areas, but suggests the eventual occurrence

of individuals at more-advanced developmental stages, a

phenomenon partially supported by works reporting the Gulf of
B

A

FIGURE 9

Pie charts showing the proportions of connectivity at each area at the distinct temporal bands of PLD (see legend for interpretation) for the winter
(A) and summer (B) experimental configurations.
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Manfredonia’s role as a nursery ground (Sciascia et al., 2018). An

exception to this trend is evident in the northernmost Adriatic,

specifically in Venice (1) and Trieste (2), where the highest rate of

particle reception occurs within the initial 15 days (35% and 53%,

respectively), indicating a higher probability of occurrence of early

life stages in these regions.

During the summer (Figure 9B), the arrival times are

remarkably short, characterized by an average probability of

reception of 30% and a maximum of 70% within the first PLD

window (0-15 days). The most favorable scenario is observed in

Istria (9), where the highest probability of receipt is concentrated in

the first 15 days, with no further particle arrivals after 30 days of

tracking. This observation indicates a prevalence of individuals in

early life stages in this subarea, aligning with prior research

highlighting Istria’s role as a spawning ground (Zorica et al.,

2020). Other potential spawning grounds are discerned in the

southeastern Adriatic, specifically in OpenSea17 (35), Montenegro

(37), and OpenSea19 (39). Favorable scenarios are also evident

along the northern edges of the Adriatic gyres, favoring cross-shore

connections, with peak reception occurring between 15 and 30 days

of individual tracking.

From a biological perspective, these findings offer valuable

insights into spawning strategies. According to our results, species

with shorter PLD, such as the red mullet or anchovy (<40 days),

would likely thrive along the Croatian coast in the summer,

benefiting from the shorter arrival times and the more favorable

oceanographic conditions. Conversely, species with longer PLD,

such as sardine or hake (>40 days), would find the northern

Adriatic and Italian shelf during winter advantageous.
4.4 Implications for the species inhabiting
the AS

Identifying the unique retentive characteristics of different areas

in the AS is a crucial step in comprehending the distribution of

marine species and designing effective conservation strategies in the

basin. Our results indicate that particles exhibit a strong preferential

direction along the coasts. The behavior in the Italian shelf was

notably diverse, with some areas maintaining high self-sustaining

ability during the summer and values shifting offshore in the winter.

The Istrian coast (Figure 1) is identified as a crucial habitat for

species spawning success, particularly in the summer, where arrival

times fall within the ranges of PLD estimated for abundant species

in the basin, such as anchovy, red mullet, and common pandora

(Table 1). Areas distributed along the Italian shelf can be identified

as essential nursery grounds, particularly when the region’s

productivity is influenced by wind-induced upwelling and river

discharges, creating favorable environmental conditions for larvae.

During the summer, when the velocity is reduced, retention is

promoted, coinciding with the spawning period of anchovy,

Mediterranean horse mackerel, and hake (Table 1). The

variability observed during winter is attributed to environmental

fluctuations, specifically the prevalence of strong winds that

significantly affect the displacement of drifters. This phenomenon
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provides advantageous opportunities for marine species with longer

PLD and spawning periods concentrated in winter, such as sardines

and common soles (refer to Table 1). Many particles arrive after

undergoing recirculation, a process that requires longer times and

results in extended arrival durations.
5 Conclusions

In this study, a hydrodynamic model integrated into the AS,

coupled with a lagrangian module, was employed to systematically

identify and evaluate sub-areas with distinct particle retention

characteristics. While traditional connectivity matrices offer a

valuable visualization tool for assessing the probability of

individual exchange between zones, the challenge lies in

extending this analysis across multiple time scales, often

overlooked in existing approaches (Cowen et al., 2006; Crochelet

et al., 2016; Gamoyo et al., 2019). To overcome this limitation, our

study introduces an innovative application of the “retention clock”

methodology, originally developed by Defne et al. (2016), and

previously applied only in a few back-barrier estuaries (Barnegat

Bay, in New Jersey, USA; Defne et al., 2016; Goodwin et al., 2019

and Chincoteague Bay, in Maryland/Virginia, USA; Beudin et al.,

2017). Therefore, our research represents a pioneering effort and the

first large-scale application of the temporal approach in the AS and,

to our knowledge, in Europe.

The proposed methodology was tested in 2018 as a case study

with representative hydrographic patterns of the AS, and in areas

with known ecological characteristics. This allowed the verification

of the distribution patterns of specific areas in the AS with the

existing scientific literature (Morello and Arneri, 2009; Coll et al.,

2010; UNEP/MAP-RAC/SPA, 2015; Fanelli et al., 2022). It also

established a correlation between the findings and the life cycle

traits of different organisms. Future research should aim to improve

the coupling of connectivity and biological knowledge at larger

spatiotemporal scales. The spatial discretization, as shown in

Figure 3, followed a logical subdivision of the domain into a

limited number of releasing sub-regions. A more detailed

subdivision of space may be necessary in future applications,

especially in areas where prior knowledge is lacking. This will

require significant computational effort, which can be reduced by

using computer clusters. Similarly, the analysis of connectivity over

multiple years requires the development of an algorithm-based

method to synthesize information and highlight the most relevant

aspects. Such a study is currently in progress. All in all, the tool will

improve the accuracy of the AS connectivity estimates which could,

for example, inform the design of networks of marine protected

areas (MPAs), fisheries assessment tools, and management policies.
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Orlić, M., Kuzmić, M., and Pasarić, Z. (1994). Response of the Adriatic Sea to the
bora and sirocco forcing. Continental Shelf Res. 14, 91–116. doi: 10.1016/0278-4343(94)
90007-8

Paoletti, S., Bekaert, K., Barbut, L., Lacroix, G., Volckaert, F. A.M., Hostens, K., et al. (2021).
Validating a biophysical dispersal model with the early life-history traits of common sole
(Solea solea L.). PloS One 16, e0257709. doi: 10.1371/journal.pone.0257709
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